
N92-1 092

NERVA UPGRADE: NON-NUCLEAR COMPONENTS
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As Stan Borowski pointed out, the technology that did exist back in the 1960's and at the

start of the 1970's under the ROVER/NERVA program was rather substantial, but there

have been advances that have occurred since the initial design of the NERVA. Some of

those advances were accomplished under the Phoebus program, the technology program
that Los Alamos and Rocketdyne were involved with in Nevada.

Other advances have occurred in the development of the shuttle engine and related
chemical rocket engines. What I would like to talk about is what would be realized if we

were designing an engine today based upon the original accomplishments of the

ROVER/NERVA program, but feeding in these advanced technologies; what would its

characteristics be, what would it be able to accomplish?

Now to start off, I have set down some hypothetical requirements for a typical manned
Mars mission. I'll try to highlight the areas that would influence the selection of the

design details of the engine. As shown in Figure 1, I am assuming; 100,000 pound thrust

engine with performance requirements in excess of 900 seconds; a maximum weight of

14,000 pounds without the shield, which is going to be a bit of a challenge to achieve; a

full performance operating range of 50 percent thrust at full Isp up to 110 percent.

Then, reflecting the concern to have a very reliable system, we had dual turbopumps

with a pump-out capability that would give us a capability of operating at 70 percent of

rated thrust at full Isp. (Incidentally, we ran Phoebus 2A with dual turbopumps).

Further I am going to assume that we are going to be able to engineer the pumping

system so it will be able to take hydrogen as a saturated liquid from the tank, accelerate

it to one velocity head (which means that we are going to be ingesting vapor), and pump

it to the full requirements of the reactor in terms of pump outlet pressure and flow rate.

As far as the maximum operating time of two hours, that comes, in part, from a belief

that by getting the engine thrust up to about 100,000 pounds for the typical Delta V's

that we have been talking about here (fairly fast trip times), we will be able to limit the

burn time, of the engine that runs the longest, to two hours. I have done that because I

wanted to tie it back to what was accomplished in Nevada and the nuclear furnace,

where fuel elements were run for approximately two hours.

I have assumed 6 restarts, and that takes into account using one engine for a number of

maneuvers, and a transition from flow initiation to full thrust of 30 seconds. That goes
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with a ramp rate of something like 100-150 degrees per second coming up in

temperature and thrust, with transition from 50% thrust to cut-off of about 30 seconds,

and a maximum core temperature that we have to remove afterheat of 1800 degrees R.

There were a number of reactors that were examined back in the 1960's and a number

that are now currently under examination. Back in the 1960's, we had the solid core

reactor, which is typified by the ROVER/NERVA program, and there were some fast

metallic systems that were looked at.

We did some engineering design studies of engine systems incorporating the GE 710

reactor, and also the Argonne National Lab had a similar fast metallic concept. We also

did a design study with Frank Rom here on an engine based upon the utilization of

tungsten 184, and the use of water moderation to provide very attractive engine cycles.

The presentation that I am limiting myself to today is the solid core reactor -

ROVER/NERVA. I would like to say a couple things about the expected performance

as shown in Figure 2.

We are talking now about temperatures in the range of 4500 degrees R to about 5580.

The epsilons (nozzle expansion ratio) show what we can expect for the peril)finance of a

high pressure system. This includes nozzle losses from the gas kinetics and nozzle

boundary layer. Divergence effects are also included. For a condition of an epsilon of

500 and a gas temperature of 4860 R or 2700 degrees Kelvin, the Isp is on the order of

920-925 seconds. You can see from this chart that there is not a lot to be gained by

going to expansion ratios higher than 500. We are collapsing down to 800 to 1000 at
almost the same value.

Now, if you want to look a little bit closer at how those numbers came about, there is a

series of comparisons that might be of interest. A 250 K engine at a chamber pressure

of 1000 psi, has a theoretical performance of 1029 seconds. If you take into account the

kinetics of what's occurring in the expansion process, it drops it down to 1028 seconds.

The boundary layer losses drop you down to 1014, and the divergence effects drop you
down to 1011 seconds.

It's important to look at the boundary layer effects, because if we go next to a 75 K

engine, where we have less flow and therefore, more boundary layer effect, we've

dropped it down to 1010, with divergence of about 1007. This is all fi)r the case of 3100

degrees Kelvin that we have examined here.

Now if we go clear on down to a very low pressure to take advantage of the increase due

to dissociation and reassociation, here is what your numbers come down to. The

theoretical performance is very high. But as you examine what happens in the kinetics

(the recombination, relaxation), you find that you drop down to about 1372 seconds --

this one is for 7,000 degrees R, -- and you suffer losses down to about 1300 for the 7,000
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case. When you take a look at that sameeffect basedupon 3100 K, you find that the
performance is somewhat higher than the 1020, but not a lot.

Now, I would like to talk a little bit about the selection of cycle. In this particular

presentation, we have made Isp our "God." We are trying to find out what we can do to

get the maximum Isp from the temperature, and so you will see this emphasized in the
charts that follow.

One of the first things you would like to do, given a certain Isp or, rather, temperature,

is to use an expander cycle. The designer has several approaches available to be able to

accomplish the circuitry of the flow to get the temperature of the hydrogen, up high

enough to be able to drive the turbine. The obvious reason for this is you don't want to

pay a penalty in terms of the Isp by having less than full temperature in all the gas.

In Configuration A in Figure 3, we have taken a portion of flow down thrgugh the tie

tubes on up to the point where it is going to join some flow that has come down through

the nozzle. It joins the flow that has been split off and that goes up through the
reflector.

The goal is to get the temperature of all the gas coming into the core as high as possible,

to maximize the amount of heat that the fuel elements can give to the hydrogen, which

will allow you to go to as high a thrust as possible. That is a key point in being able to

raise your thrust-to-weight ratio: get the temperature up so that the full power of the

reactor can heat more working fluid.

Now in Configuration B in Figure 3, we have done something a little differently. What

we have done here is assume that we can get all the heat we need to drive the turbine

through the tie tubes. This allows us to minimize the heat pickup up through the nozzle

and then up through the reflector. However, remember I said I want to make Isp my

"God" here. Any heat that is transferred to the nozzle up to this point is a loss. It's

taking enthalpy out of the expanding gas, and it drops your Isp a little bit. So what you

would like to do is make the nozzle all adiabatic, but we can't do that because of the
materials.

This study is based upon a ROVER/NERVA core that makes use of a number of

clusters, as shown in Figure 4. In this case, there are a total of 6 of these 19-hole fuel

elements residing around a center element, resting on a core support block. The fuel

element is approximately 52 inches long. The tie tube assembly is used to get the

enthalpy to drive the turbine. This particular design has pneumatically driven actuators.

Now, let's take a look at what happens to a high expansion ratio nozzle if we try to

design it to make use of the maximum amount of enthalpy. In Figure 5 we have

assumed carbon/carbon composite as the material, and we have plotted the maximum

wall temperatures, both inside and outside, as a function of area ratio.
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For the design you will see in a minute, we have chosen to limit the expansion ratio at

which we attached this adiabatic cooled nozzle to about 150; the wall temperature goes

to about 2600 degrees R on the composite. We can be tempted perhaps to go to a

smaller cooled expansion ratio, which would mean that we would be extracting less heat.

We could help ourselves with Isp, but in doing so we are going to run into a problem in

what we think the maximum temperature is that the uncooled noozle can handle.

Figure 6 shows the plot of some of the calculations that have been made on the heat
load on this kind of a nozzle. In this particular case, we have assumed that the hydrogen

comes in and flows two ways at an epsilon of about 6. A portion of the flow goes down

to that 150 to 1 expansion ratio point, then back up, which gives rise to these two values

of the wall temperatures shown here. Notice that the heat flux hits the maximum around

the throat, and in this particular case we are talking about 40 BTU's per square inch per

second. It then drops drastically down.

In the shuttle engine, we are able to withstand heat fluxes at the throat area of about 75

BTU's per square inch per second, so we could go a bit further on up in chamber

pressure.

One way to get the thrust-to-weight ratio of your system up is to reduce the size of the

entire assembly by going on up in chamber pressure. One of the big drivers in terms of

size is the nozzle, so that if we do succeed in operating at a higher chamber pressure,

that will shove up this heat flux at the throat. However, we still have some margin to

deal with there.

Figure 7 shows what this thing looks like when you make the assumptions that I just
talked about. Here is a nozzle assembly involving the reactor, the throat area, the point

at which the hydrogen comes in and makes a pass, and a half-portion of it down through

the throat. The other part goes up through the converging section where your big heat

load is. Notice how big this whole assembly has gotten. I have shown it here as if it

were an extendable nozzle (this is the uncooled portion), and it's translated up around

the engine.

This particular size is dictated in part not only by what I was just talking about, but by

the size of this interface. If you try to get a very high lsp with a conventional nozzle

system (and the reason this thing looks this way is because we have tried to avoid roach

lines; shock losses in that expansion process to minimize Isp again) you are talking about

a very large assembly.

There may be ways to get this down to a more manageable size. One can think about

the idea of the collapsible drinking cup you take on camping trips, and put several

interfaces there to be able to pull down this size. There are also some other nozzle

concepts that lend themselves to better packaging, but if you go conventional and you go

for maximum Isp, this is what you are faced with.
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I mentioned earlier that our interest was in having a reliable systemso that if we should
have a failure, or sensean incipient failure of one of the turbopumps, we could continue
to operate and get the mission accomplishedor at least retreat gracefully to somesort of
a recovery plan. If you try to provide for dual turbopumps to do this, you may have a
very complex systeminvolving a number of valves that can isolate the pumping, or that
canalso get the pumps to share the load equally.

In Figure 8, which we have patterned after our experiencesin Nevada,we had actual
flow pumps that had negative HQ curves. That kind of a systemis inherently self-
balancing. The pumps share the load equally.

We have done it here by picking a designpoint that is closeto the design specific speed
line, but is far enough over from the predicted stall region so we can actually throttle at
full temperature down to 50 percent. This is the value that I assumedin my example. It
also representsthe kind of limit that the reactor people are comfortable ,,fith in terms of
having full temperature, but reduced coolant flow going through. If you suffered a
failure of a turbopump, you would move to a new operating point out to the right, where
the developed head and the flow rate intersect with the reactor load line.

This example showsan ability to meet that requirement, but notice that we are getting
close to what wascalled a negative flow incidence. That's the caseon the inducer at the
front end of the pump where the flow incidence angleson the impeller, the front end of
the impeller, goes negative,and then your NPSH requirements come up. So if you want
to try to operate this pump at 70 percent thrust (for reasonsof retrieval on your mission)
and you want to operate with negative NPSH, it may be necessaryto add a boost pump
that would be hydraulically driven soyou could match the speedto give you the proper
incidence angle.

Figure 9 is a cartoon of one version of the pump that could do this. In this particular
casewe have patterned it after what we did on the Mark 25. The design incorporates
hybrid hydrostatic bearings,at the outboard end of the turbine, which were proven in
Nevada to be able to operate in a very satisfactorymanner.

We wanted to go for the hydrostatic bearing to get rid of any materials that were in the
bearings or anywhere else in this turbopump that would suffer any kind of damage from
the intense nuclear environment that we anticipated. Those bearings actually provided
the meansof doing that, and they worked.

We also tested an advancedinducer which actually went up in flow capacity by 50
percent area. It wasmade out of titanium so that we could keep the weight overhang off
the stub of the shaft reasonable,to maintain a critical speedwhere we wanted it. We
also reduced the incidence angle, a designQ over N, to about 1.5degrees,and we tested
it. We found that we were able to ingest not only a saturated liquid going into the
pump, but we kept going and we found that we could ingest up to 30 percent vapor and
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still the pump put out full pressure.

If that can be realized in a flight system,it enablesus to pump a saturated fluid from a
tank. The other thing we haveshown is a single stageturbine over at the drive end. We
could play the gamesof going to two stagesthere, take the pressureratio and adjust it
acrosseach stageand make more effective utilization of the turbine drive fluid,
depending upon the temperature that we are able to put into that drive fluid by the tie
tube circuitry. So, we have some flexibility there.

We have also looked at integrated, pneumatic fluidics control systemsto come up with a
control systemthat would enable us to operate the entire engine in an intense radiation
environment (see figure 10). Basedupon the developmentwork that wasaccomplished,
it looks like we could do it. In other words, it would not be necessaryto shield this
engine from anything it doesto itself radiation-wise. If you want to put a shield in this
engine, it would be to protect the crew, but not becausethe engine requires it.

Figure 11showsthe final version of what an expandercycleengine systemwould look
like in terms of its operating conditions. This particular setup allows us to meet the
requirements I talked about, except that we are talking here about a weight of about
18,000pounds and not 14,000pounds.

How do we get that thrust-to-weight ratio up? Obviously most of the weight is in the
reactor, but there may be a limit to what can be done there to make the weight as low as
you would like to. There is another way to get that thrust-to-weight ratio up, and that is
to get more thrust out of this configuration. And the thing that determines what you can
get out of this engine is not the designof the pumps,not the designof the nozzle, but
the power density in the fuel elements.

This particular designat 100 K has a power density of 1 megawatt per fuel element,
which was actually demonstratedin the Phoebusprogram. There are some indications
that you canget as high as 1 and a quarter megawattsper fuel element. That would
raise the sameengine to 125,000poundsof thrust. That's the route that you need to
examine: how hard you can push the fuel elements in power density for a given outlet
temperature and a given total operating time? "
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TYPICAL MANNED MARS MISSION
NTR PROPULSION REQUIREMENTS

. THRUST, NOMINAL

• PERFORMANCE

• MAXIMUM WEIGHT

• FULL PERFORMANCE OPERATING RANGE

• EMERGENCY THRUST (W ONE PUMP OUT)

• NPSH(MIN)

• MAXIMUM OPERATING TIME

• NUMBER OFRESTARTS

• TRANSITION, FLOW INITIATION TO FULL THRUST

• TRANSITION, 50% THRUST TO CUT-OFF

• MAXIMUM CORE TEMPERATURE, AFTER HEAT

100,000 LBF

> 900 SEC

< 14,000 LBS (WITHOUT SHIELD)

110% _ 50%

70%

ONE VELOCITY HEAD FROM
SATURATED LIQUID IN TANK

2 HOURS

_>6

30 SEC

30 SEC

1800°R
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NTR Expander Cycles (Typical)

\
CONFIGURATION A

Rover/Nerva

CONFIGURATION B

Core-Reactor

Figure 3
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SCALED 5 STAGE MK25 PUMP

SINGLE STAGE EXPANDER TURBINE

PUMP FLOWRATE 54 I.B/SEC

RPM 37,500

PUMP INLET DIAMETER 5.71 IN.

Figure 9
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100K FLIGHT THRUST MODULE/FEED SYSTEM
MODULE ASSEMBLY
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Figure 11
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